Myo-inositol boosts cold toleranceCombined application of myo-inositol and corn steep liquor enhances seedling growth and cold tolerance in cucumber and tomato.
Study highlights inositol benefits
We explored the effects of myo-inositol and corn steep liquor (CSL) on cucumber and tomato seedlings, particularly focusing on their ability to withstand cold temperatures. Through our research, we found that applying these substances led to noticeable improvements in seedling growth during low-temperature stress.
Our treatments not only increased the levels of photosynthetic pigments, enhancing photosynthesis, but also reduced harmful compounds like malondialdehyde (MDA) and electrolyte leakage. This suggests that the combination of inositol and CSL helps to protect plant cells under stress.
Additionally, we confirmed these findings by analyzing the expression of important genes that relate to cold tolerance in cucumbers. The most effective mix we identified was 0.6 mL L of CSL together with 72 mg L of myo-inositol. Overall, this study gives us valuable insights into how we can use inositol and maize leachate to foster early growth in crops and improve their resilience against cold weather.
Read More
MIOX gene enhances cold toleranceGenome-wide identification of the myo-inositol oxygenase gene family in alfalfa (Medicago sativa L.) and expression analysis under abiotic stress.
Focus on inositol's cold effects
We explored how myo-inositol oxygenase (MIOX), an important enzyme, might help alfalfa, a type of forage crop, adapt to challenging cold conditions. The study identified ten MsMIOX genes in the alfalfa genome, which were found distributed across three chromosomes.
Through analysis, we noted that these genes exhibited similarities in structure and conserved features, hinting at a functional role important for the plant's survival under stress.
Our qRT-PCR tests showed that different MsMIOX genes could be triggered by cold and other abiotic stress factors like drought and salinity. Notably, the activity of MIOX in alfalfa significantly increased under these harsh conditions.
By overexpressing the MsMIOX2 gene in yeast, we found that it notably enhanced resistance to cold stresses. Additionally, when MsMIOX2 was overexpressed in alfalfa’s hairy roots, it reduced reactive oxygen species and improved the plant's resilience against cold.
This study provides valuable insights into how inositol plays a part in helping alfalfa thrive even in cold weather, presenting a candidate for future efforts to enhance the plant’s stress tolerance.
Read More
Myo-inositol boosts cold toleranceSlFHY3 and SlHY5 act compliantly to enhance cold tolerance through the integration of myo-inositol and light signaling in tomato.
Significant role of inositol
We explored how low red to far-red light ratios influence cold tolerance in tomato plants. The focus was on two key proteins, SlFHY3 and SlHY5, which play a role in increasing the accumulation of myo-inositol, a compound linked with cold resistance.
Our findings revealed that when tomato plants experienced low light ratios, it encouraged the production of SlFHY3 under cold stress. Knocking out this gene led to lower myo-inositol levels and made the plants more vulnerable to cold, while overexpressing it had the opposite effect.
Moreover, we found that SlFHY3 works closely with SlHY5 to boost writing activity for a particular gene involved in myo-inositol synthesis. This interaction is crucial, as it significantly enhances both myo-inositol levels and the plants' ability to withstand cold conditions. Without these proteins or the inositol synthesis gene, the cold resistance we observed was diminished.
Ultimately, our study shines a light on the important relationship between light signals, inositol accumulation, and cold tolerance in tomatoes, unveiling how plants manage environmental stress.
Read More
Inositol transporter's role in coldThe Vacuolar Inositol Transporter BvINT1;1 Contributes to Raffinose Biosynthesis and Reactive Oxygen Species Scavenging During Cold Stress in Sugar Beet.
Explores inositol and cold stress
We examined how inositol, a key component in the production of raffinose, plays a role in helping sugar beet plants withstand cold stress. In the study, researchers identified the vacuolar inositol transporter BvINT1;1, which seems to be critical for the synthesis of raffinose under chilly conditions.
When plants were exposed to cold, BvINT1;1 was found to be highly active, ensuring adequate inositol was available for raffinose production. Interestingly, sugar beet mutants that lacked functional BvINT1;1 not only had higher levels of inositol but also lower amounts of raffinose when subjected to cold stress.
This reduction in raffinose was significant because raffinose can help neutralize harmful reactive oxygen species (ROS), which accumulate when plants are stressed. As a result, these mutants showed increased expression of genes related to ROS, pointing out a potential risk for them during cold weather.
Overall, our findings suggest that the transporter BvINT1;1 is not just about moving inositol; it plays a vital role in boosting the plant's cold resilience by facilitating raffinose biosynthesis and maintaining balance against oxidative stress.
Read More
We delved into the fascinating world of white water lilies and their remarkable ability to withstand cold temperatures. This study aimed to understand how certain compounds, particularly myo-inositol, contribute to the plant's cold resilience.
Through a comprehensive examination, we learned that the water lily effectively copes with winter by entering a state called ecodormancy. During this time, the plant reallocates resources and enhances its defenses against cold stress.
One of our key findings was the significance of myo-inositol. This compound helps bolster the plant’s cold tolerance, although it works alongside various other factors. It plays a role in regulating metabolic activities, especially in relation to amino acids, which are crucial for overcoming chilly conditions.
Although our study highlighted the importance of myo-inositol, it did not isolate its effects from other treatments, which limits our understanding of its specific impact. Nevertheless, the insights we gained about the water lily’s adaptive strategies provide valuable information for future agricultural practices in cold climates.
Read More