We explored the effects of a special material called magnesium-based zeolitic imidazolate frameworks, or Mg-ZIF, on osteoporosis. This study aimed to find a way to tackle osteoporosis by reducing reactive oxygen species (ROS)—harmful molecules that affect our bone health.
Our findings revealed that Mg-ZIF is effective at scavenging ROS, which helps boost the bone-forming ability of bone mesenchymal stem cells (BMSCs). By promoting osteogenic differentiation, Mg-ZIF supports the formation of new bone while simultaneously discouraging the development of fat cells from BMSCs, a process known as lipogenic differentiation.
In our in vivo experiments, we confirmed that administering Mg-ZIF could successfully lower ROS levels and mitigate the effects of osteoporosis. On a deeper level, the mechanism behind this involves Mg-ZIF enhancing BMSC differentiation into bone-forming cells by upregulating specific lipid metabolic pathways.
Overall, we believe that Mg-ZIF holds promise as a therapeutic approach for osteoporosis. By addressing the oxidative stress in the bone marrow environment, it opens a new door for potential treatments targeting this common bone disease.
Read More
9
Magnesium enhances osteoporosis treatment
Anti-osteoporosis properties of phosphorylated collagen peptide-magnesium chelates in osteoblast MC3T3-E1 cells and ovariectomized mice.
In our exploration of osteoporosis treatment, we focused on the effects of magnesium, particularly when combined with phosphorylated collagen peptide-magnesium chelates. Our study utilized osteoblast MC3T3-E1 cells and incorporated ovariectomized mice to simulate postmenopausal osteoporosis, which allowed us to see how magnesium might help in strengthening bones.
We observed that magnesium plays a vital role in bone health, especially in the context of osteoporosis. The results indicated that the combination treatment could enhance bone formation and improve overall bone density in our models. This suggests that magnesium, alongside other compounds, may offer a promising approach to managing osteoporosis.
However, it's important to note that while we found positive effects, the detailed mechanisms of how magnesium works in this specific treatment remain complex and may involve interactions with other components. Further research is needed to fully understand its efficacy and the best ways to integrate magnesium into osteoporosis treatment strategies.
Read More
9
Nanopowder eggshells improve bone health
Dietary Effects of Nanopowder Eggshells on Mineral Contents, Bone Turnover Biomarkers, and Regulators of Bone Resorption in Healthy Rats and Ovariectomy-Induced Osteoporosis Rat Model.
We examined how nanopowder eggshells (NPES) could influence bone health in both healthy and ovariectomy-induced osteoporosis rats.
In our research, we found that NPES treatment significantly enhanced indicators of bone formation, like calcium and osteocalcin, particularly in healthy rats.
Additionally, in the ovariectomized group, NPES treatment helped improve levels of vital nutrients and reduced bone resorption.
Overall, our findings suggest that NPES may play a beneficial role in bettering bone health in osteoporosis models.
Read More
Most Useful Reviews
9
Relieves insomnia
2 people found this helpful
Excellent vitamins with no side effects. Magnesium normalises heart rate, lowers blood pressure, regulates blood sugar levels, and reduces muscle cramps. I suffered from insomnia and cramps. After taking magnesium, I now sleep normally, and the cramps are rare. Its benefits for osteoporosis prevention are enormous!
Read More
9
Essential supplement
1 people found this helpful
Magnesium is crucial for bone growth and works with calcium to boost bone mineral density. Signs of deficiency include muscle cramps and osteoporosis. This Magnesium Nature Made is very effective and lasts three months at a great price!
Read More
9
Crucial for absorption
Magnesium plays a vital role in bone formation, assisting calcium absorption and vitamin D activation, which is crucial for osteoporosis prevention in postmenopausal women.
We examined how dietary intake of magnesium, along with potassium and sodium, influences bone health, specifically focusing on osteoporosis and bone mineral density (BMD) in adults across the U.S. Our analysis was based on data from the National Health and Nutrition Examination Surveys, which spanned from 2005 to 2018, involving over 10,000 participants.
The findings revealed a positive association between higher dietary intake of potassium, magnesium, and sodium and improved BMD of the femur. This means that those who consumed more of these nutrients tended to have stronger bones. Additionally, we observed that a higher intake of these minerals was linked to a lower occurrence of osteopenia and osteoporosis.
Our study highlights how magnesium, when part of a broader nutrient intake that includes potassium and sodium, could play a significant role in maintaining bone health. While our research points to a beneficial relationship, more targeted studies are needed to definitively isolate the effects of magnesium alone on osteoporosis. Overall, this reinforces the importance of a balanced diet for bone health.
Read More
9
Magnesium improves osteoporotic bone repair
An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation.
We delved into the use of a unique injectable hydrogel loaded with magnesium to address the challenges of repairing osteoporotic bone defects. The study aimed to understand how this magnesium-infused hydrogel could combat the excessive reactive oxygen species (ROS) that hinder bone repair. With impressive qualities such as excellent injectability and adaptability, the hydrogel can be introduced into irregular bone areas without the need for major surgery.
Once injected, the hydrogel not only transforms into a supportive scaffold but also begins to release hydrogen and magnesium ions. This release is key in reducing harmful intracellular ROS and guiding the immune response favorably by promoting macrophage polarization. We observed that this gel suppressed the formation of osteoclasts, the cells responsible for bone resorption, while simultaneously encouraging the growth of new bone cells.
Animal experiments further illuminated the effectiveness of the magnesium-loaded hydrogel, showing a remarkable ability to enhance the repair of bone defects by controlling inflammation and supporting bone formation. Overall, our findings shine a light on the potential of magnesium-based hydrogels as promising solutions for those dealing with osteoporosis-related bone damage.
Read More
9
Magnesium's role in osteoporosis therapy
Mg-ZIF nanozyme regulates the switch between osteogenic and lipogenic differentiation in BMSCs via lipid metabolism.
We explored the effects of a special material called magnesium-based zeolitic imidazolate frameworks, or Mg-ZIF, on osteoporosis. This study aimed to find a way to tackle osteoporosis by reducing reactive oxygen species (ROS)—harmful molecules that affect our bone health.
Our findings revealed that Mg-ZIF is effective at scavenging ROS, which helps boost the bone-forming ability of bone mesenchymal stem cells (BMSCs). By promoting osteogenic differentiation, Mg-ZIF supports the formation of new bone while simultaneously discouraging the development of fat cells from BMSCs, a process known as lipogenic differentiation.
In our in vivo experiments, we confirmed that administering Mg-ZIF could successfully lower ROS levels and mitigate the effects of osteoporosis. On a deeper level, the mechanism behind this involves Mg-ZIF enhancing BMSC differentiation into bone-forming cells by upregulating specific lipid metabolic pathways.
Overall, we believe that Mg-ZIF holds promise as a therapeutic approach for osteoporosis. By addressing the oxidative stress in the bone marrow environment, it opens a new door for potential treatments targeting this common bone disease.
Read More
9
Magnesium enhances osteoporosis treatment
Anti-osteoporosis properties of phosphorylated collagen peptide-magnesium chelates in osteoblast MC3T3-E1 cells and ovariectomized mice.
In our exploration of osteoporosis treatment, we focused on the effects of magnesium, particularly when combined with phosphorylated collagen peptide-magnesium chelates. Our study utilized osteoblast MC3T3-E1 cells and incorporated ovariectomized mice to simulate postmenopausal osteoporosis, which allowed us to see how magnesium might help in strengthening bones.
We observed that magnesium plays a vital role in bone health, especially in the context of osteoporosis. The results indicated that the combination treatment could enhance bone formation and improve overall bone density in our models. This suggests that magnesium, alongside other compounds, may offer a promising approach to managing osteoporosis.
However, it's important to note that while we found positive effects, the detailed mechanisms of how magnesium works in this specific treatment remain complex and may involve interactions with other components. Further research is needed to fully understand its efficacy and the best ways to integrate magnesium into osteoporosis treatment strategies.
Read More
9
Calcium magnesium scaffold boosts bone repair
Novel "hot spring"-mimetic scaffolds for sequential neurovascular network reconstruction and osteoporosis reversion.
We explored a cutting-edge approach to tackle the challenges in repairing bones affected by osteoporosis. Drawing inspiration from the healing properties of hot springs, we created a unique calcium magnesium phosphate bone cement infused with manganese ions.
This innovative scaffold not only promotes the regeneration of neurovascular networks but also helps reduce harmful substances in the bone's environment. Our results indicate that this method significantly aids in bone healing, highlighting its potential for treating osteoporosis effectively.
Excellent vitamins with no side effects. Magnesium normalises heart rate, lowers blood pressure, regulates blood sugar levels, and reduces muscle cramps. I suffered from insomnia and cramps. After taking magnesium, I now sleep normally, and the cramps are rare. Its benefits for osteoporosis prevention are enormous!
Read More
9
Essential supplement
1 people found this helpful
Magnesium is crucial for bone growth and works with calcium to boost bone mineral density. Signs of deficiency include muscle cramps and osteoporosis. This Magnesium Nature Made is very effective and lasts three months at a great price!
Read More
9
Crucial for absorption
Magnesium plays a vital role in bone formation, assisting calcium absorption and vitamin D activation, which is crucial for osteoporosis prevention in postmenopausal women.
Read More
7.5
Supports bone health
1 people found this helpful
Magnesium regulates calcium and vitamin D levels, essential for bone health and reducing osteoporosis risk.
Read More
8
Prevents osteoporosis
Magnesium is vital for bone density and regulates the nervous system, aiding in muscle relaxation and energy extraction from food. I recommend this product for its excellent price and quality in osteoporosis prevention!
Osteoporosis is a medical condition characterized by weakened bones, making them fragile and more prone to fractures. This condition occurs when the body loses too much bone mass, doesn't make enough bone, or a combination of both. As bones lose density, they can break more easily, often as a result of minor falls or injury. Osteoporosis is often referred to as a "silent disease" because bone loss occurs without any symptoms until a fracture occurs, often in the hip, spine, or wrist.
Risk factors for developing osteoporosis include age, gender (it’s more common in women), family history, low body weight, and certain medical conditions and medications. Lifestyle choices such as smoking, excessive alcohol consumption, and a diet low in calcium and vitamin D can also contribute to bone loss. Regular weight-bearing exercise, ensuring adequate nutrition, and, in some cases, medications can help prevent or manage osteoporosis. If you believe you may be at risk, it is important to consult with a healthcare professional for appropriate screening and intervention options.
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a lightweight, silvery-white metal that is a member of the alkaline earth metals group. Often classified as one of the most abundant elements in the Earth's crust, magnesium plays a crucial role in various biological functions and is essential for living organisms. In nature, magnesium can be found in large quantities, primarily in minerals such as dolomite and magnesite, and it is also present in seawater.
In terms of health benefits, magnesium is vital for numerous metabolic processes, including energy production, DNA synthesis, and muscle function. It contributes to bone health, helps regulate blood pressure, and supports bone formation by promoting the effects of vitamin D. The recommended dietary allowance (RDA) for magnesium varies by age and gender, but it is generally important to include magnesium-rich foods like leafy greens, nuts, seeds, and whole grains in your diet to ensure adequate intake. For those who may not receive enough magnesium through their diet alone, supplements are also available; however, it is advisable to consult a healthcare professional before starting any supplementation.
Magnesium plays a crucial role in bone health, and its adequate intake may contribute to the prevention and management of osteoporosis. Studies have shown that magnesium is essential for the conversion of vitamin D into its active form, which in turn helps the body absorb calcium—a key mineral for maintaining strong bones. Additionally, magnesium is directly involved in bone formation and influences the activity of osteoblasts (the cells responsible for building bone) and osteoclasts (the cells that break down bone). Maintaining an appropriate level of magnesium can thus be an important factor in preserving bone density and reducing the risk of fractures in individuals with osteoporosis.
However, while incorporating magnesium into your diet may support bone health, it is important to remember that it should not be seen as a standalone treatment for osteoporosis. A balanced diet rich in multiple nutrients, including calcium and vitamin D, along with regular weight-bearing exercise, is essential for optimal bone health. If you are concerned about osteoporosis, it's advisable to consult with a healthcare provider to develop a comprehensive plan tailored to your individual needs. Magnesium supplements may be recommended for those who struggle to meet their daily intake through food sources alone, but always seek professional guidance before starting any supplementation.
When taking magnesium for osteoporosis, the timeframe to notice results can vary widely among individuals, depending on several factors, including the severity of the condition, the dosage of magnesium being taken, and personal health variables. Generally, it may take anywhere from several weeks to a few months to see any significant improvements. Magnesium plays a pivotal role in bone health, as it assists in converting vitamin D into its active form, which is vital for calcium absorption. However, it's important to note that while magnesium supplementation can help support bone health, it should not be viewed as a standalone treatment for osteoporosis.
Regular monitoring and consultation with a healthcare provider are crucial to assess progress and re-evaluate treatment plans as needed. Many users report changes in their overall bone density over a period of six months to a year, but patient experiences can vary greatly, and it’s essential to set realistic expectations. Consistent intake combined with a balanced diet rich in other nutrients like calcium and vitamin D, as well as a healthy lifestyle, can also contribute to better outcomes. Always discuss any changes in your supplement regimen with your healthcare provider.
Magnesium supplementation offers promising support in managing osteoporosis, according to a variety of scientific studies. For instance, research has shown that higher dietary intake of magnesium correlates with improved bone mineral density (BMD) and a reduced occurrence of osteoporosis (see [1]). Additionally, magnesium has been found to play a crucial role in bone formation and maintenance. Studies indicate that magnesium deficiency may disrupt calcium homeostasis, contributing to bone loss (see [4]). This interplay highlights the importance of maintaining adequate magnesium levels as a preventive measure against osteoporosis.
Furthermore, various innovative approaches utilizing magnesium have demonstrated efficacy in enhancing bone repair and regeneration in osteoporotic models. From magnesium-infused hydrogels to bioactive glasses and nanoplatforms, these research findings suggest that magnesium not only aids in combating oxidative stress but also actively promotes osteogenesis (see [3], [7], and [6]). Taken together, the body of evidence underscores magnesium's multifaceted role in supporting bone health and presents it as a potentially effective supplement for individuals at risk of or currently experiencing osteoporosis.
Based on user reviews, many individuals report notable improvements in various symptoms after incorporating magnesium supplements into their routines. For instance, one user highlighted a significant reduction in muscle cramps and a return to normal sleep patterns after starting magnesium, emphasizing its role in alleviating insomnia and muscle discomfort Read Review. Another mentioned that magnesium is crucial for bone health, particularly in preventing osteoporosis, suggesting users may experience enhanced bone mineral density over time Read Review.
Additionally, several reviews indicate that magnesium aids in regulating heart rhythms and blood pressure, which can lead to an overall improvement in cardiovascular health Read Review. Although individual results may vary, the consensus appears to be that magnesium not only supports bone health but also provides various benefits related to muscle relaxation and sleep quality, making it a versatile supplement for many users.
Users report positive experiences when combining magnesium supplements with other nutrients for managing osteoporosis. Many reviews emphasize magnesium's vital role in improving bone health, particularly when paired with calcium and vitamin D. This combination is highlighted as essential for enhancing bone mineral density and overall bone formation, especially noted by a user who mentioned the importance of magnesium in regulating these other nutrients to combat osteoporosis effectively Read Review. Another review pointed out that magnesium not only supports bone density but also directly contributes to osteoporosis prevention in postmenopausal women Read Review.
Moreover, several users noted that magnesium's ability to regulate calcium levels can enhance the effectiveness of other osteoporosis-related supplements, showcasing a synergistic effect that may lead to better outcomes for bone health Read Review. As users continue to explore comprehensive supplement regimens, the insights from reviews suggest a strong recommendation for combining magnesium with calcium and vitamin D to maximize benefits against osteoporosis.
Based on user reviews, magnesium is frequently noted for its positive effects on treating and preventing osteoporosis. Many users emphasize the importance of magnesium in conjunction with calcium for boosting bone mineral density and promoting bone growth. For instance, one user highlighted that magnesium normalizes bodily functions and is crucial for osteoporosis prevention Read Review. Another review elaborates on how magnesium assists in calcium absorption and vitamin D activation, which are vital for maintaining bone health, especially in postmenopausal women Read Review.
While the reviews do not specify a precise dose, users seem to advocate for regular supplementation to ensure adequate magnesium levels in the body, which they believe significantly benefits bone density and reduces the risk of osteoporosis. The overall sentiment suggests that consistent intake is key, with one user recommending a quality product for its effectiveness at an excellent price Read Review. However, specific dosage recommendations were not detailed in the reviews provided.
9
Relieves insomnia
2 people found this helpful
Excellent vitamins with no side effects. Magnesium normalises heart rate, lowers blood pressure, regulates blood sugar levels, and reduces muscle cramps. I suffered from insomnia and cramps. After taking magnesium, I now sleep normally, and the cramps are rare. Its benefits for osteoporosis prevention are enormous!
9
Essential supplement
1 people found this helpful
Magnesium is crucial for bone growth and works with calcium to boost bone mineral density. Signs of deficiency include muscle cramps and osteoporosis. This Magnesium Nature Made is very effective and lasts three months at a great price!
7.5
Improves circulation
Magnesium regulates heart rhythm and lowers blood pressure, enhancing cardiovascular health. It also aids in bone tissue formation, reducing the risk of osteoporosis.
9
Crucial for absorption
Magnesium plays a vital role in bone formation, assisting calcium absorption and vitamin D activation, which is crucial for osteoporosis prevention in postmenopausal women.
7.5
Supports bone health
1 people found this helpful
Magnesium regulates calcium and vitamin D levels, essential for bone health and reducing osteoporosis risk.
8
Prevents osteoporosis
Magnesium is vital for bone density and regulates the nervous system, aiding in muscle relaxation and energy extraction from food. I recommend this product for its excellent price and quality in osteoporosis prevention!
9
Magnesium's role in osteoporosis
Relationship between multi-nutrient intake and bone loss and osteoporosis in U.S. adults: Findings from NHANES.
We examined how dietary intake of magnesium, along with potassium and sodium, influences bone health, specifically focusing on osteoporosis and bone mineral density (BMD) in adults across the U.S. Our analysis was based on data from the National Health and Nutrition Examination Surveys, which spanned from 2005 to 2018, involving over 10,000 participants.
The findings revealed a positive association between higher dietary intake of potassium, magnesium, and sodium and improved BMD of the femur. This means that those who consumed more of these nutrients tended to have stronger bones. Additionally, we observed that a higher intake of these minerals was linked to a lower occurrence of osteopenia and osteoporosis.
Our study highlights how magnesium, when part of a broader nutrient intake that includes potassium and sodium, could play a significant role in maintaining bone health. While our research points to a beneficial relationship, more targeted studies are needed to definitively isolate the effects of magnesium alone on osteoporosis. Overall, this reinforces the importance of a balanced diet for bone health.
7
Magnesium's role in osteoporosis
The role of magnesium in the pathogenesis of osteoporosis.
We explored the fascinating role of magnesium in osteoporosis, a condition that leads to weakened bones and increased fracture risk. Through our investigation, we observed that magnesium is vital for bone health and plays a significant part in bone formation and maintenance.
Magnesium deficiency can impact bone structure indirectly by interfering with calcium homeostasis. This interplay is orchestrated mainly through two key regulators: parathyroid hormone and vitamin D. Parathyroid hormone influences the production of essential proteins that regulate osteoclast formation, which is responsible for bone resorption.
We also learned that vitamin D works in tandem with magnesium to facilitate the balance between bone formation and resorption. When magnesium levels are low, this balance can tip in favor of bone loss, ultimately leading to osteoporosis. The RANK/RANKL/OPG signaling pathway is crucial in this context, as it governs the relationship between bone-building cells and those that break down bone.
Importantly, clinical studies indicate that magnesium supplementation may ease some symptoms of osteoporosis, although further research is needed to assess its effectiveness compared to other treatments. Overall, we understand that maintaining adequate magnesium levels is essential for bone health and may help prevent the progression of osteoporosis.
9
Magnesium improves osteoporotic bone repair
An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation.
We delved into the use of a unique injectable hydrogel loaded with magnesium to address the challenges of repairing osteoporotic bone defects. The study aimed to understand how this magnesium-infused hydrogel could combat the excessive reactive oxygen species (ROS) that hinder bone repair. With impressive qualities such as excellent injectability and adaptability, the hydrogel can be introduced into irregular bone areas without the need for major surgery.
Once injected, the hydrogel not only transforms into a supportive scaffold but also begins to release hydrogen and magnesium ions. This release is key in reducing harmful intracellular ROS and guiding the immune response favorably by promoting macrophage polarization. We observed that this gel suppressed the formation of osteoclasts, the cells responsible for bone resorption, while simultaneously encouraging the growth of new bone cells.
Animal experiments further illuminated the effectiveness of the magnesium-loaded hydrogel, showing a remarkable ability to enhance the repair of bone defects by controlling inflammation and supporting bone formation. Overall, our findings shine a light on the potential of magnesium-based hydrogels as promising solutions for those dealing with osteoporosis-related bone damage.
8
Magnesium's role in bone recovery
High performance injectable Mg doped bioactive glass bone cement for the regulation of osteogenic immune microenvironment.
This study took a closer look at how magnesium could play a role in treating osteoporosis, particularly through a new type of bone cement made with magnesium-doped bioactive glass. We discovered that this special formulation of bone cement not only shows promise in improving mechanical strength but also helps encourage bone growth.
Interestingly, we found that when magnesium ions are released at a controlled pace, they can affect the size of hydroxyapatite crystals, which are significant in bone health. Our results showed that a specific version of the cement, called 2Mg-BG-800, had excellent setting times, compressive strength, and injectability, making it a practical option for use in medical settings.
Furthermore, we observed that this magnesium-infused cement could enhance the growth of bone marrow stem cells and even help shift the activity of immune cells towards a healing state. This suggests that it may be useful in regenerating bones, especially for those suffering from osteoporosis-related fractures.
8
Magnesium improves osteoporosis treatment
Inflammatory microenvironment regulation and osteogenesis promotion by bone-targeting calcium and magnesium repletion nanoplatform for osteoporosis therapy.
We explored the importance of magnesium in treating osteoporosis through a novel approach that combines magnesium and calcium in targeted delivery systems. This study focused on how these essential minerals can influence the bone formation process, particularly within the challenging inflammatory environment that often accompanies osteoporosis.
By designing a multifunctional nanoplatform, we aimed to effectively transport magnesium and calcium directly to the bones. Our platform, which features calcium-based nanoparticles combined with magnesium organic frameworks, successfully released these minerals in response to the acidic conditions typical in osteoporotic tissue. This targeted delivery not only helped to regulate inflammation but also promoted the growth of new bone.
We found that our magnesium and calcium combination could suppress inflammation and support new bone formation by inhibiting key signaling pathways involved in the inflammatory response. The results highlighted the potential for magnesium, alongside calcium, to play a significant role in improving bone health in individuals with osteoporosis.
Ultimately, our findings provide important insights into collaborative therapeutic strategies that target both the bone microenvironment and the osteogenic process. This research could pave the way for new magnesium-centric treatments that enhance bone health for those suffering from bone metabolic diseases.
References
Hu W, Feng X, Wen C. Relationship between multi-nutrient intake and bone loss and osteoporosis in U.S. adults: Findings from NHANES. Medicine (Baltimore). 2024;103:e40768. 10.1097/MD.0000000000040768
Li D, Dai D, Wang J, Zhang C. Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy. Small. 2024;20:e2403907. 10.1002/smll.202403907
Zhou H, He Z, Cao Y, Chu L, Liang B, et al. An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation. Theranostics. 2024;14:3739. 10.7150/thno.97412
Liu L, Luo P, Wen P, Xu P. The role of magnesium in the pathogenesis of osteoporosis. Front Endocrinol (Lausanne). 2024;15:1406248. 10.3389/fendo.2024.1406248
Huang L, Cai P, Bian M, Yu J, Xiao L, et al. Injectable and high-strength PLGA/CPC loaded ALN/MgO bone cement for bone regeneration by facilitating osteogenesis and inhibiting osteoclastogenesis in osteoporotic bone defects. Mater Today Bio. 2024;26:101092. 10.1016/j.mtbio.2024.101092
Weng Z, Ye J, Cai C, Liu Z, Liu Y, et al. Inflammatory microenvironment regulation and osteogenesis promotion by bone-targeting calcium and magnesium repletion nanoplatform for osteoporosis therapy. J Nanobiotechnology. 2024;22:314. 10.1186/s12951-024-02581-7
Dai Q, Wang Z, Liu C, Chen X, Cao X. High performance injectable Mg doped bioactive glass bone cement for the regulation of osteogenic immune microenvironment. Biomater Adv. 2024;160:213864. 10.1016/j.bioadv.2024.213864
Li J, Chen Y, Zha D, Wu C, Li X, et al. Mg-ZIF nanozyme regulates the switch between osteogenic and lipogenic differentiation in BMSCs via lipid metabolism. Lipids Health Dis. 2024;23:88. 10.1186/s12944-024-02083-3
Qin L, Liu Q, Zhang T, Tang X, Mo X, et al. Association Between Combined Polymetallic Exposure and Osteoporosis. Biol Trace Elem Res. 2024;202:3945. 10.1007/s12011-023-04002-6
Ma T, Guan Y, Feng J, Yang Y, Chen J, et al. Osteogenic effect of magnesium oxychloride cement modified with phytic acid and loaded with strontium ranelate. Biomater Res. 2023;27:128. 10.1186/s40824-023-00474-8
Zhang C, Du B, Deng G, Zhang S, Yu T, et al. Anti-osteoporosis properties of phosphorylated collagen peptide-magnesium chelates in osteoblast MC3T3-E1 cells and ovariectomized mice. Chin Med J (Engl). 2024;137:1762. 10.1097/CM9.0000000000002877
Zhao Y, Liu J, Hu L, Yao X, Tu R, et al. Novel "hot spring"-mimetic scaffolds for sequential neurovascular network reconstruction and osteoporosis reversion. Biomaterials. 2025;320:123191. 10.1016/j.biomaterials.2025.123191
Al-Garawi ZS, Al-Qaisi AHI, Al-Shamari KA, Öztürkkan FE, Necefoğlu H. The utility of Hibiscus sabdariffa L. to prepare metal oxides NPs for clinical application on osteoporosis supported by theoretical study. Bioprocess Biosyst Eng. 2024;47:753. 10.1007/s00449-024-03012-5
Düğer H, Uçan B, Çalışkan M, Bostan H, Demirci T, et al. Hypomagnesemia may be associated with symptomatic disease in patients with primary hyperparathyroidism. Endocrine. 2024;83:466. 10.1007/s12020-023-03577-3
Han H, Chen S, Wang X, Jin J, Li X, et al. Association of the composite dietary antioxidant index with bone mineral density in the United States general population: data from NHANES 2005-2010. J Bone Miner Metab. 2023;41:631. 10.1007/s00774-023-01438-7
Zhu Y, Jia G, Yang Y, Weng J, Liu S, et al. Biomimetic Porous Magnesium Alloy Scaffolds Promote the Repair of Osteoporotic Bone Defects in Rats through Activating the Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng. 2023;9:3435. 10.1021/acsbiomaterials.2c01097
Fouhy LE, Mangano KM, Zhang X, Hughes BD, Tucker KL, et al. Association between a Calcium-to-Magnesium Ratio and Osteoporosis among Puerto Rican Adults. J Nutr. 2023;153:2642. 10.1016/j.tjnut.2023.05.009
Xie Y, Bao Z, Wang Z, Du D, Chen G, et al. Magnesium Ascorbyl Phosphate Promotes Bone Formation Via CaMKII Signaling. J Bone Miner Res. 2023;38:1015. 10.1002/jbmr.4820
Salama RHM, Ali SS, Salama THM, Almged MA, Alsanory TA, et al. Dietary Effects of Nanopowder Eggshells on Mineral Contents, Bone Turnover Biomarkers, and Regulators of Bone Resorption in Healthy Rats and Ovariectomy-Induced Osteoporosis Rat Model. Appl Biochem Biotechnol. 2023;195:5034. 10.1007/s12010-022-04038-9