We explored the effects of a special material called magnesium-based zeolitic imidazolate frameworks, or Mg-ZIF, on osteoporosis. This study aimed to find a way to tackle osteoporosis by reducing reactive oxygen species (ROS)—harmful molecules that affect our bone health.
Our findings revealed that Mg-ZIF is effective at scavenging ROS, which helps boost the bone-forming ability of bone mesenchymal stem cells (BMSCs). By promoting osteogenic differentiation, Mg-ZIF supports the formation of new bone while simultaneously discouraging the development of fat cells from BMSCs, a process known as lipogenic differentiation.
In our in vivo experiments, we confirmed that administering Mg-ZIF could successfully lower ROS levels and mitigate the effects of osteoporosis. On a deeper level, the mechanism behind this involves Mg-ZIF enhancing BMSC differentiation into bone-forming cells by upregulating specific lipid metabolic pathways.
Overall, we believe that Mg-ZIF holds promise as a therapeutic approach for osteoporosis. By addressing the oxidative stress in the bone marrow environment, it opens a new door for potential treatments targeting this common bone disease.
Read More
9
Magnesium enhances osteoporosis treatment
Anti-osteoporosis properties of phosphorylated collagen peptide-magnesium chelates in osteoblast MC3T3-E1 cells and ovariectomized mice.
In our exploration of osteoporosis treatment, we focused on the effects of magnesium, particularly when combined with phosphorylated collagen peptide-magnesium chelates. Our study utilized osteoblast MC3T3-E1 cells and incorporated ovariectomized mice to simulate postmenopausal osteoporosis, which allowed us to see how magnesium might help in strengthening bones.
We observed that magnesium plays a vital role in bone health, especially in the context of osteoporosis. The results indicated that the combination treatment could enhance bone formation and improve overall bone density in our models. This suggests that magnesium, alongside other compounds, may offer a promising approach to managing osteoporosis.
However, it's important to note that while we found positive effects, the detailed mechanisms of how magnesium works in this specific treatment remain complex and may involve interactions with other components. Further research is needed to fully understand its efficacy and the best ways to integrate magnesium into osteoporosis treatment strategies.
Read More
9
Nanopowder eggshells improve bone health
Dietary Effects of Nanopowder Eggshells on Mineral Contents, Bone Turnover Biomarkers, and Regulators of Bone Resorption in Healthy Rats and Ovariectomy-Induced Osteoporosis Rat Model.
We examined how nanopowder eggshells (NPES) could influence bone health in both healthy and ovariectomy-induced osteoporosis rats.
In our research, we found that NPES treatment significantly enhanced indicators of bone formation, like calcium and osteocalcin, particularly in healthy rats.
Additionally, in the ovariectomized group, NPES treatment helped improve levels of vital nutrients and reduced bone resorption.
Overall, our findings suggest that NPES may play a beneficial role in bettering bone health in osteoporosis models.
Read More
Most Useful Reviews
9
Bone health benefits
89 people found this helpful
Magnesium is crucial for everyone! Most people lack it. This brand, derived from a food source, excels in benefits ranging from bone health and formation to absorbing calcium and preventing osteoporosis. Consistent intake is necessary!
Read More
9
Suitable for osteoporosis
I purchased this natural, safe product for my mother, who suffers from osteoporosis, and it suits her perfectly. It's excellent for her needs.
Read More
7.5
Recommended for osteoporosis
This magnesium supplement has excellent quality, supported by research. I took it alongside a group of vitamins for bone health, recommended by Dr. Karim Ali, who focuses on osteoporosis management.
We examined how dietary intake of magnesium, along with potassium and sodium, influences bone health, specifically focusing on osteoporosis and bone mineral density (BMD) in adults across the U.S. Our analysis was based on data from the National Health and Nutrition Examination Surveys, which spanned from 2005 to 2018, involving over 10,000 participants.
The findings revealed a positive association between higher dietary intake of potassium, magnesium, and sodium and improved BMD of the femur. This means that those who consumed more of these nutrients tended to have stronger bones. Additionally, we observed that a higher intake of these minerals was linked to a lower occurrence of osteopenia and osteoporosis.
Our study highlights how magnesium, when part of a broader nutrient intake that includes potassium and sodium, could play a significant role in maintaining bone health. While our research points to a beneficial relationship, more targeted studies are needed to definitively isolate the effects of magnesium alone on osteoporosis. Overall, this reinforces the importance of a balanced diet for bone health.
Read More
9
Magnesium improves osteoporotic bone repair
An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation.
We delved into the use of a unique injectable hydrogel loaded with magnesium to address the challenges of repairing osteoporotic bone defects. The study aimed to understand how this magnesium-infused hydrogel could combat the excessive reactive oxygen species (ROS) that hinder bone repair. With impressive qualities such as excellent injectability and adaptability, the hydrogel can be introduced into irregular bone areas without the need for major surgery.
Once injected, the hydrogel not only transforms into a supportive scaffold but also begins to release hydrogen and magnesium ions. This release is key in reducing harmful intracellular ROS and guiding the immune response favorably by promoting macrophage polarization. We observed that this gel suppressed the formation of osteoclasts, the cells responsible for bone resorption, while simultaneously encouraging the growth of new bone cells.
Animal experiments further illuminated the effectiveness of the magnesium-loaded hydrogel, showing a remarkable ability to enhance the repair of bone defects by controlling inflammation and supporting bone formation. Overall, our findings shine a light on the potential of magnesium-based hydrogels as promising solutions for those dealing with osteoporosis-related bone damage.
Read More
9
Magnesium's role in osteoporosis therapy
Mg-ZIF nanozyme regulates the switch between osteogenic and lipogenic differentiation in BMSCs via lipid metabolism.
We explored the effects of a special material called magnesium-based zeolitic imidazolate frameworks, or Mg-ZIF, on osteoporosis. This study aimed to find a way to tackle osteoporosis by reducing reactive oxygen species (ROS)—harmful molecules that affect our bone health.
Our findings revealed that Mg-ZIF is effective at scavenging ROS, which helps boost the bone-forming ability of bone mesenchymal stem cells (BMSCs). By promoting osteogenic differentiation, Mg-ZIF supports the formation of new bone while simultaneously discouraging the development of fat cells from BMSCs, a process known as lipogenic differentiation.
In our in vivo experiments, we confirmed that administering Mg-ZIF could successfully lower ROS levels and mitigate the effects of osteoporosis. On a deeper level, the mechanism behind this involves Mg-ZIF enhancing BMSC differentiation into bone-forming cells by upregulating specific lipid metabolic pathways.
Overall, we believe that Mg-ZIF holds promise as a therapeutic approach for osteoporosis. By addressing the oxidative stress in the bone marrow environment, it opens a new door for potential treatments targeting this common bone disease.
Read More
9
Magnesium enhances osteoporosis treatment
Anti-osteoporosis properties of phosphorylated collagen peptide-magnesium chelates in osteoblast MC3T3-E1 cells and ovariectomized mice.
In our exploration of osteoporosis treatment, we focused on the effects of magnesium, particularly when combined with phosphorylated collagen peptide-magnesium chelates. Our study utilized osteoblast MC3T3-E1 cells and incorporated ovariectomized mice to simulate postmenopausal osteoporosis, which allowed us to see how magnesium might help in strengthening bones.
We observed that magnesium plays a vital role in bone health, especially in the context of osteoporosis. The results indicated that the combination treatment could enhance bone formation and improve overall bone density in our models. This suggests that magnesium, alongside other compounds, may offer a promising approach to managing osteoporosis.
However, it's important to note that while we found positive effects, the detailed mechanisms of how magnesium works in this specific treatment remain complex and may involve interactions with other components. Further research is needed to fully understand its efficacy and the best ways to integrate magnesium into osteoporosis treatment strategies.
Read More
9
Calcium magnesium scaffold boosts bone repair
Novel "hot spring"-mimetic scaffolds for sequential neurovascular network reconstruction and osteoporosis reversion.
We explored a cutting-edge approach to tackle the challenges in repairing bones affected by osteoporosis. Drawing inspiration from the healing properties of hot springs, we created a unique calcium magnesium phosphate bone cement infused with manganese ions.
This innovative scaffold not only promotes the regeneration of neurovascular networks but also helps reduce harmful substances in the bone's environment. Our results indicate that this method significantly aids in bone healing, highlighting its potential for treating osteoporosis effectively.
Magnesium is crucial for everyone! Most people lack it. This brand, derived from a food source, excels in benefits ranging from bone health and formation to absorbing calcium and preventing osteoporosis. Consistent intake is necessary!
Read More
9
Suitable for osteoporosis
I purchased this natural, safe product for my mother, who suffers from osteoporosis, and it suits her perfectly. It's excellent for her needs.
Read More
7.5
Recommended for osteoporosis
This magnesium supplement has excellent quality, supported by research. I took it alongside a group of vitamins for bone health, recommended by Dr. Karim Ali, who focuses on osteoporosis management.
Read More
7.5
Healthy recovery
This supplement is a good choice due to its convenient form for absorption and dosage. It has helped my body recover following a coronavirus infection. I recommend it for preventing osteoporosis, cardiovascular diseases, and other issues like diabetes and migraines. It’s a practical and healthy supplement that I trust.
Read More
7.5
Supports overall health
Magnesium Glycinate is highly absorbable, bound to glycine, making it gentle on the stomach and effective for overall health. It improves sleep quality, reduces anxiety, supports the nervous system, and helps with mood regulation. It enhances calcium absorption, thus lowering the risk of osteoporosis while stabilising blood sugar levels, beneficial for diabetics. The recommended daily dose is 200-400 mg, depending on your needs.
Read More
Frequently Asked Questions
Osteoporosis is a medical condition characterized by weakened bones, making them fragile and more prone to fractures. This condition occurs when the body loses too much bone mass, doesn't make enough bone, or a combination of both. As bones lose density, they can break more easily, often as a result of minor falls or injury. Osteoporosis is often referred to as a "silent disease" because bone loss occurs without any symptoms until a fracture occurs, often in the hip, spine, or wrist.
Risk factors for developing osteoporosis include age, gender (it’s more common in women), family history, low body weight, and certain medical conditions and medications. Lifestyle choices such as smoking, excessive alcohol consumption, and a diet low in calcium and vitamin D can also contribute to bone loss. Regular weight-bearing exercise, ensuring adequate nutrition, and, in some cases, medications can help prevent or manage osteoporosis. If you believe you may be at risk, it is important to consult with a healthcare professional for appropriate screening and intervention options.
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a lightweight, silvery-white metal that is a member of the alkaline earth metals group. Often classified as one of the most abundant elements in the Earth's crust, magnesium plays a crucial role in various biological functions and is essential for living organisms. In nature, magnesium can be found in large quantities, primarily in minerals such as dolomite and magnesite, and it is also present in seawater.
In terms of health benefits, magnesium is vital for numerous metabolic processes, including energy production, DNA synthesis, and muscle function. It contributes to bone health, helps regulate blood pressure, and supports bone formation by promoting the effects of vitamin D. The recommended dietary allowance (RDA) for magnesium varies by age and gender, but it is generally important to include magnesium-rich foods like leafy greens, nuts, seeds, and whole grains in your diet to ensure adequate intake. For those who may not receive enough magnesium through their diet alone, supplements are also available; however, it is advisable to consult a healthcare professional before starting any supplementation.
Magnesium plays a crucial role in bone health, and its adequate intake may contribute to the prevention and management of osteoporosis. Studies have shown that magnesium is essential for the conversion of vitamin D into its active form, which in turn helps the body absorb calcium—a key mineral for maintaining strong bones. Additionally, magnesium is directly involved in bone formation and influences the activity of osteoblasts (the cells responsible for building bone) and osteoclasts (the cells that break down bone). Maintaining an appropriate level of magnesium can thus be an important factor in preserving bone density and reducing the risk of fractures in individuals with osteoporosis.
However, while incorporating magnesium into your diet may support bone health, it is important to remember that it should not be seen as a standalone treatment for osteoporosis. A balanced diet rich in multiple nutrients, including calcium and vitamin D, along with regular weight-bearing exercise, is essential for optimal bone health. If you are concerned about osteoporosis, it's advisable to consult with a healthcare provider to develop a comprehensive plan tailored to your individual needs. Magnesium supplements may be recommended for those who struggle to meet their daily intake through food sources alone, but always seek professional guidance before starting any supplementation.
Based on user reviews, the timeline for seeing results from magnesium supplements for osteoporosis can vary quite a bit. While specific timeframes were not detailed, users generally express positive experiences with integrating these supplements into their health routines. Some users highlight benefits related to overall health and recovery, which may indirectly support their progress with osteoporosis management Read Review. Additionally, reviews emphasize that magnesium aids in calcium absorption, which is crucial for bone health Read Review.
While individual results may vary depending on overall health and concurrent treatments, many users feel assured that a consistent intake can contribute positively over time. However, specifics on how long it takes for osteoporosis-related improvements were not found in the reviews provided, making it difficult to determine an exact timeframe for observable results. It's worth noting that incorporating such supplements alongside a broader strategy for bone health often yields the best outcomes.
The research surrounding magnesium as a supplement for osteoporosis shows a promising potential. Studies indicate a notable association between higher magnesium intake and enhanced bone health. For example, one study established that increased dietary magnesium is linked to better bone mineral density (BMD) and a lower prevalence of osteoporosis among adults. The role of magnesium is underscored by its necessity in maintaining calcium homeostasis and influencing bone formation through various mechanisms, such as the action of parathyroid hormone and vitamin D [1][4]. Additionally, animal studies have demonstrated that magnesium, especially when combined with other materials, can significantly enhance bone healing and regeneration in osteoporotic conditions [2][3].
In practical applications, innovative approaches using magnesium in bone cement and hydrogels have shown effectiveness in promoting bone repair and reducing inflammation, which are critical factors in treating osteoporosis [5][6]. While there is a clear body of evidence suggesting that magnesium may mitigate the risks and symptoms associated with osteoporosis, further research is necessary to fully elucidate its mechanisms and establish standardized treatment protocols. Overall, integrating magnesium into osteoporosis management strategies appears to be a promising direction for enhancing bone health [9].
Users report a range of improvements in symptoms related to osteoporosis and overall health after taking magnesium supplements. For instance, one user noted that the supplement perfectly suited their mother’s needs for osteoporosis management, indicating satisfaction with the product’s effectiveness in addressing specific health concerns Read Review. Additionally, another reviewer mentioned that magnesium enhanced recovery following a coronavirus infection, while also contributing to the prevention of osteoporosis, cardiovascular diseases, and migraines Read Review.
Moreover, users have highlighted improvements in sleep quality, anxiety reduction, and mood stabilization, attributing these benefits to the magnesium's high absorption and gentle formulation Read Review. While individual results can certainly vary based on health conditions and other factors, it’s evident that users generally find magnesium supplements to be beneficial for both osteoporotic concerns and broader health, particularly when used in conjunction with a comprehensive health regimen.
Users report positive experiences when combining the magnesium supplement with other vitamins aimed at bone health, especially in relation to osteoporosis management. One user noted that they took the supplement alongside a group of vitamins recommended by a specialist in osteoporosis, indicating a supportive strategy for managing the condition Read Review. This suggests that users are exploring comprehensive health routines that integrate various supplements to optimize bone health and overall wellness.
Additionally, magnesium's high absorbability is frequently highlighted, as it not only enhances calcium absorption—critical for bone strength—but also supports other aspects of health, including sleep quality, mood stabilization, and anxiety reduction Read Review. These multiple benefits suggest that users find magnesium supplements to be an essential component of their overall approach to managing osteoporosis and improving quality of life.
Users report varying insights regarding the right dose of magnesium for treating osteoporosis. The general consensus appears to suggest a range, with one user noting that the recommended daily dose is typically between 200-400 mg, depending on individual needs Read Review. This dosage is connected to benefits such as improving calcium absorption, which could assist in lowering the risk of osteoporosis.
Several reviewers also emphasize the importance of magnesium's absorption and its role in overall health. Products like magnesium glycinate are frequently mentioned for their high absorption rates and gentleness on the stomach, making them a popular choice for users looking to support bone health while managing other health issues Read Review. However, it's noteworthy that specific personal circumstances, such as concurrent health conditions or concurrent supplementation with other vitamins, can influence individual dosing needs and effectiveness.
7.5
Healthy recovery
This supplement is a good choice due to its convenient form for absorption and dosage. It has helped my body recover following a coronavirus infection. I recommend it for preventing osteoporosis, cardiovascular diseases, and other issues like diabetes and migraines. It’s a practical and healthy supplement that I trust.
7.5
Supports overall health
Magnesium Glycinate is highly absorbable, bound to glycine, making it gentle on the stomach and effective for overall health. It improves sleep quality, reduces anxiety, supports the nervous system, and helps with mood regulation. It enhances calcium absorption, thus lowering the risk of osteoporosis while stabilising blood sugar levels, beneficial for diabetics. The recommended daily dose is 200-400 mg, depending on your needs.
9
Suitable for osteoporosis
I purchased this natural, safe product for my mother, who suffers from osteoporosis, and it suits her perfectly. It's excellent for her needs.
7.5
Recommended for osteoporosis
This magnesium supplement has excellent quality, supported by research. I took it alongside a group of vitamins for bone health, recommended by Dr. Karim Ali, who focuses on osteoporosis management.
9
Magnesium's role in osteoporosis
Relationship between multi-nutrient intake and bone loss and osteoporosis in U.S. adults: Findings from NHANES.
We examined how dietary intake of magnesium, along with potassium and sodium, influences bone health, specifically focusing on osteoporosis and bone mineral density (BMD) in adults across the U.S. Our analysis was based on data from the National Health and Nutrition Examination Surveys, which spanned from 2005 to 2018, involving over 10,000 participants.
The findings revealed a positive association between higher dietary intake of potassium, magnesium, and sodium and improved BMD of the femur. This means that those who consumed more of these nutrients tended to have stronger bones. Additionally, we observed that a higher intake of these minerals was linked to a lower occurrence of osteopenia and osteoporosis.
Our study highlights how magnesium, when part of a broader nutrient intake that includes potassium and sodium, could play a significant role in maintaining bone health. While our research points to a beneficial relationship, more targeted studies are needed to definitively isolate the effects of magnesium alone on osteoporosis. Overall, this reinforces the importance of a balanced diet for bone health.
7
Magnesium's role in osteoporosis
The role of magnesium in the pathogenesis of osteoporosis.
We explored the fascinating role of magnesium in osteoporosis, a condition that leads to weakened bones and increased fracture risk. Through our investigation, we observed that magnesium is vital for bone health and plays a significant part in bone formation and maintenance.
Magnesium deficiency can impact bone structure indirectly by interfering with calcium homeostasis. This interplay is orchestrated mainly through two key regulators: parathyroid hormone and vitamin D. Parathyroid hormone influences the production of essential proteins that regulate osteoclast formation, which is responsible for bone resorption.
We also learned that vitamin D works in tandem with magnesium to facilitate the balance between bone formation and resorption. When magnesium levels are low, this balance can tip in favor of bone loss, ultimately leading to osteoporosis. The RANK/RANKL/OPG signaling pathway is crucial in this context, as it governs the relationship between bone-building cells and those that break down bone.
Importantly, clinical studies indicate that magnesium supplementation may ease some symptoms of osteoporosis, although further research is needed to assess its effectiveness compared to other treatments. Overall, we understand that maintaining adequate magnesium levels is essential for bone health and may help prevent the progression of osteoporosis.
8
Magnesium's promise for osteoporosis
Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy.
In our exploration of how magnesium can help treat osteoporosis, we focused on a unique combination of materials to improve bone healing. The study investigated the use of magnesium alloys, known for their biodegradability and suitable elasticity for bone repair. However, it also incorporated graphene oxide quantum dots and layered double hydroxides to enhance the overall effect.
The results showed promise, particularly with the construction of a honeycomb-like coated structure on magnesium alloys. This innovative design helps regulate the degradation rate of magnesium, providing a conducive environment for bone regeneration. By allowing osteoblasts, the cells responsible for bone formation, to survive better and function properly, we observed that magnesium combined with these materials may effectively promote bone healing in osteoporotic patients.
Specifically, the activation of mitophagy—where damaged mitochondria in osteoblasts are cleared—was identified as a key factor in supporting osteogenesis. The improvement in bone regeneration and integration was confirmed using a rat model with femoral defects. Our findings suggest that magnesium alloys' combination with advanced materials like graphene oxide and layered double hydroxides may represent a promising approach to addressing osteoporosis-related bone defects.
9
Magnesium improves osteoporotic bone repair
An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation.
We delved into the use of a unique injectable hydrogel loaded with magnesium to address the challenges of repairing osteoporotic bone defects. The study aimed to understand how this magnesium-infused hydrogel could combat the excessive reactive oxygen species (ROS) that hinder bone repair. With impressive qualities such as excellent injectability and adaptability, the hydrogel can be introduced into irregular bone areas without the need for major surgery.
Once injected, the hydrogel not only transforms into a supportive scaffold but also begins to release hydrogen and magnesium ions. This release is key in reducing harmful intracellular ROS and guiding the immune response favorably by promoting macrophage polarization. We observed that this gel suppressed the formation of osteoclasts, the cells responsible for bone resorption, while simultaneously encouraging the growth of new bone cells.
Animal experiments further illuminated the effectiveness of the magnesium-loaded hydrogel, showing a remarkable ability to enhance the repair of bone defects by controlling inflammation and supporting bone formation. Overall, our findings shine a light on the potential of magnesium-based hydrogels as promising solutions for those dealing with osteoporosis-related bone damage.
8
Magnesium enhances osteoporosis treatment
Injectable and high-strength PLGA/CPC loaded ALN/MgO bone cement for bone regeneration by facilitating osteogenesis and inhibiting osteoclastogenesis in osteoporotic bone defects.
We explored how magnesium, along with other components, could address the challenges posed by osteoporosis. In this study, researchers developed a novel bone cement that incorporates magnesium oxide nanoparticles, aiming to enhance bone regeneration.
This innovative cement, known as C/AM-PL/C, demonstrated impressive mechanical strength and the ability to remain effective during injection. By releasing magnesium and calcium, the cement not only supported the growth of new blood vessels but also encouraged the differentiation of bone-forming cells.
Furthermore, the study highlighted that the cement could help inhibit the formation of bone-resorbing cells, providing a dual action beneficial for osteoporosis treatment. Especially noteworthy was how this cement improved healing in animal models with osteoporosis-related bone defects, showing promise as a treatment option for those suffering from this condition.
Overall, it appears that magnesium, when combined with other components in this novel cement, plays a significant role in encouraging bone healing and combatting the effects of osteoporosis.
8
Magnesium improves osteoporosis treatment
Inflammatory microenvironment regulation and osteogenesis promotion by bone-targeting calcium and magnesium repletion nanoplatform for osteoporosis therapy.
We explored the importance of magnesium in treating osteoporosis through a novel approach that combines magnesium and calcium in targeted delivery systems. This study focused on how these essential minerals can influence the bone formation process, particularly within the challenging inflammatory environment that often accompanies osteoporosis.
By designing a multifunctional nanoplatform, we aimed to effectively transport magnesium and calcium directly to the bones. Our platform, which features calcium-based nanoparticles combined with magnesium organic frameworks, successfully released these minerals in response to the acidic conditions typical in osteoporotic tissue. This targeted delivery not only helped to regulate inflammation but also promoted the growth of new bone.
We found that our magnesium and calcium combination could suppress inflammation and support new bone formation by inhibiting key signaling pathways involved in the inflammatory response. The results highlighted the potential for magnesium, alongside calcium, to play a significant role in improving bone health in individuals with osteoporosis.
Ultimately, our findings provide important insights into collaborative therapeutic strategies that target both the bone microenvironment and the osteogenic process. This research could pave the way for new magnesium-centric treatments that enhance bone health for those suffering from bone metabolic diseases.
8
Magnesium may prevent osteoporosis
Association Between Combined Polymetallic Exposure and Osteoporosis.
We explored the connection between magnesium and osteoporosis by examining data from 2,115 participants. A variety of methods, including LASSO regression and logistic regression, were employed to analyze plasma concentrations of 22 different metals and their relationship with osteoporosis.
From our analysis, we found that magnesium plays a notable role in the likelihood of developing osteoporosis. Specifically, it was consistently associated with a reduced risk of this condition. In our findings, magnesium showed a negative correlation with osteoporosis, meaning higher levels of this essential mineral were linked to a lower chance of osteoporosis.
However, we also noted that exposure to metals like aluminum and cadmium was positively associated with an increased risk of osteoporosis, indicating that a combination of various metal exposures could influence bone health adversely. While magnesium appears to offer protective benefits, the interplay of different metals complicates the overall picture.
References
Hu W, Feng X, Wen C. Relationship between multi-nutrient intake and bone loss and osteoporosis in U.S. adults: Findings from NHANES. Medicine (Baltimore). 2024;103:e40768. 10.1097/MD.0000000000040768
Li D, Dai D, Wang J, Zhang C. Honeycomb Bionic Graphene Oxide Quantum Dot/Layered Double Hydroxide Composite Nanocoating Promotes Osteoporotic Bone Regeneration via Activating Mitophagy. Small. 2024;20:e2403907. 10.1002/smll.202403907
Zhou H, He Z, Cao Y, Chu L, Liang B, et al. An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation. Theranostics. 2024;14:3739. 10.7150/thno.97412
Liu L, Luo P, Wen P, Xu P. The role of magnesium in the pathogenesis of osteoporosis. Front Endocrinol (Lausanne). 2024;15:1406248. 10.3389/fendo.2024.1406248
Huang L, Cai P, Bian M, Yu J, Xiao L, et al. Injectable and high-strength PLGA/CPC loaded ALN/MgO bone cement for bone regeneration by facilitating osteogenesis and inhibiting osteoclastogenesis in osteoporotic bone defects. Mater Today Bio. 2024;26:101092. 10.1016/j.mtbio.2024.101092
Weng Z, Ye J, Cai C, Liu Z, Liu Y, et al. Inflammatory microenvironment regulation and osteogenesis promotion by bone-targeting calcium and magnesium repletion nanoplatform for osteoporosis therapy. J Nanobiotechnology. 2024;22:314. 10.1186/s12951-024-02581-7
Dai Q, Wang Z, Liu C, Chen X, Cao X. High performance injectable Mg doped bioactive glass bone cement for the regulation of osteogenic immune microenvironment. Biomater Adv. 2024;160:213864. 10.1016/j.bioadv.2024.213864
Li J, Chen Y, Zha D, Wu C, Li X, et al. Mg-ZIF nanozyme regulates the switch between osteogenic and lipogenic differentiation in BMSCs via lipid metabolism. Lipids Health Dis. 2024;23:88. 10.1186/s12944-024-02083-3
Qin L, Liu Q, Zhang T, Tang X, Mo X, et al. Association Between Combined Polymetallic Exposure and Osteoporosis. Biol Trace Elem Res. 2024;202:3945. 10.1007/s12011-023-04002-6
Ma T, Guan Y, Feng J, Yang Y, Chen J, et al. Osteogenic effect of magnesium oxychloride cement modified with phytic acid and loaded with strontium ranelate. Biomater Res. 2023;27:128. 10.1186/s40824-023-00474-8
Zhang C, Du B, Deng G, Zhang S, Yu T, et al. Anti-osteoporosis properties of phosphorylated collagen peptide-magnesium chelates in osteoblast MC3T3-E1 cells and ovariectomized mice. Chin Med J (Engl). 2024;137:1762. 10.1097/CM9.0000000000002877
Zhao Y, Liu J, Hu L, Yao X, Tu R, et al. Novel "hot spring"-mimetic scaffolds for sequential neurovascular network reconstruction and osteoporosis reversion. Biomaterials. 2025;320:123191. 10.1016/j.biomaterials.2025.123191
Al-Garawi ZS, Al-Qaisi AHI, Al-Shamari KA, Öztürkkan FE, Necefoğlu H. The utility of Hibiscus sabdariffa L. to prepare metal oxides NPs for clinical application on osteoporosis supported by theoretical study. Bioprocess Biosyst Eng. 2024;47:753. 10.1007/s00449-024-03012-5
Düğer H, Uçan B, Çalışkan M, Bostan H, Demirci T, et al. Hypomagnesemia may be associated with symptomatic disease in patients with primary hyperparathyroidism. Endocrine. 2024;83:466. 10.1007/s12020-023-03577-3
Han H, Chen S, Wang X, Jin J, Li X, et al. Association of the composite dietary antioxidant index with bone mineral density in the United States general population: data from NHANES 2005-2010. J Bone Miner Metab. 2023;41:631. 10.1007/s00774-023-01438-7
Zhu Y, Jia G, Yang Y, Weng J, Liu S, et al. Biomimetic Porous Magnesium Alloy Scaffolds Promote the Repair of Osteoporotic Bone Defects in Rats through Activating the Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng. 2023;9:3435. 10.1021/acsbiomaterials.2c01097
Fouhy LE, Mangano KM, Zhang X, Hughes BD, Tucker KL, et al. Association between a Calcium-to-Magnesium Ratio and Osteoporosis among Puerto Rican Adults. J Nutr. 2023;153:2642. 10.1016/j.tjnut.2023.05.009
Xie Y, Bao Z, Wang Z, Du D, Chen G, et al. Magnesium Ascorbyl Phosphate Promotes Bone Formation Via CaMKII Signaling. J Bone Miner Res. 2023;38:1015. 10.1002/jbmr.4820
Salama RHM, Ali SS, Salama THM, Almged MA, Alsanory TA, et al. Dietary Effects of Nanopowder Eggshells on Mineral Contents, Bone Turnover Biomarkers, and Regulators of Bone Resorption in Healthy Rats and Ovariectomy-Induced Osteoporosis Rat Model. Appl Biochem Biotechnol. 2023;195:5034. 10.1007/s12010-022-04038-9