Medical Researches
Possibly Effective
Based on 27 Researches
Calcium complex enhances bone healthA calcium-loaded complex based on Antarctic krill protein and supplemented with pectin promotes calcium absorption and bone health.
Study shows complex enhances calcium
Our research explored the effects of a new calcium-loaded complex, made from Antarctic krill protein and enriched with pectin, on calcium absorption and bone health in mice with calcium deficiency. We created a model that simulated calcium deficiency, which is a significant concern as it can contribute to osteoporosis.
We observed that chronic calcium deprivation led to decreased calcium absorption and deterioration of bone structure. However, the P + Ca + HMP complex significantly improved calcium retention and increased the strength of the femur, indicating a positive impact on bone health.
Additionally, this complex improved the structure of the trabecular network, which is essential for maintaining strong bones. The presence of beneficial bacteria in the gut also rose after the intervention, and these were linked to better calcium absorption and bone synthesis. Overall, these findings point to the potential of the P + Ca + HMP complex as an effective calcium supplement that could help prevent calcium deficiency and thus support bone health.
Read More
Combination therapy for osteoporosisEffect of salmon calcitonin combined with calcium antagonist on blood calcium and phosphorus ion concentration in osteoporosis rats.
Relevant combination treatment exploration.
We explored how salmon calcitonin (sCT) works in tandem with calcium antagonists—specifically verapamil, nifedipine, and diltiazem—to influence blood calcium and phosphorus levels in female rats with osteoporosis post-ovarian removal.
The study involved a systematic approach where we administered these combinations to different groups of osteoporotic rats and measured their blood levels. Our findings revealed that combining sCT with nifedipine had a particularly strong effect in lowering both calcium and phosphorus in the blood, outperforming the use of sCT alone.
Our analysis indicated that while sCT with nifedipine was most effective, the combinations with verapamil and diltiazem also showed beneficial effects, albeit to a lesser extent. These insights provide valuable information on how combination therapies might be targeted for treating postmenopausal osteoporosis, potentially paving the way for more effective treatment options in human patients.
Read More
Magnesium's role in osteoporosisRelationship between multi-nutrient intake and bone loss and osteoporosis in U.S. adults: Findings from NHANES.
Moderate relevance to magnesium impact
We examined how dietary intake of magnesium, along with potassium and sodium, influences bone health, specifically focusing on osteoporosis and bone mineral density (BMD) in adults across the U.S. Our analysis was based on data from the National Health and Nutrition Examination Surveys, which spanned from 2005 to 2018, involving over 10,000 participants.
The findings revealed a positive association between higher dietary intake of potassium, magnesium, and sodium and improved BMD of the femur. This means that those who consumed more of these nutrients tended to have stronger bones. Additionally, we observed that a higher intake of these minerals was linked to a lower occurrence of osteopenia and osteoporosis.
Our study highlights how magnesium, when part of a broader nutrient intake that includes potassium and sodium, could play a significant role in maintaining bone health. While our research points to a beneficial relationship, more targeted studies are needed to definitively isolate the effects of magnesium alone on osteoporosis. Overall, this reinforces the importance of a balanced diet for bone health.
Read More
We delved into the use of a unique injectable hydrogel loaded with magnesium to address the challenges of repairing osteoporotic bone defects. The study aimed to understand how this magnesium-infused hydrogel could combat the excessive reactive oxygen species (ROS) that hinder bone repair. With impressive qualities such as excellent injectability and adaptability, the hydrogel can be introduced into irregular bone areas without the need for major surgery.
Once injected, the hydrogel not only transforms into a supportive scaffold but also begins to release hydrogen and magnesium ions. This release is key in reducing harmful intracellular ROS and guiding the immune response favorably by promoting macrophage polarization. We observed that this gel suppressed the formation of osteoclasts, the cells responsible for bone resorption, while simultaneously encouraging the growth of new bone cells.
Animal experiments further illuminated the effectiveness of the magnesium-loaded hydrogel, showing a remarkable ability to enhance the repair of bone defects by controlling inflammation and supporting bone formation. Overall, our findings shine a light on the potential of magnesium-based hydrogels as promising solutions for those dealing with osteoporosis-related bone damage.
Read More
We explored the effects of a special material called magnesium-based zeolitic imidazolate frameworks, or Mg-ZIF, on osteoporosis. This study aimed to find a way to tackle osteoporosis by reducing reactive oxygen species (ROS)—harmful molecules that affect our bone health.
Our findings revealed that Mg-ZIF is effective at scavenging ROS, which helps boost the bone-forming ability of bone mesenchymal stem cells (BMSCs). By promoting osteogenic differentiation, Mg-ZIF supports the formation of new bone while simultaneously discouraging the development of fat cells from BMSCs, a process known as lipogenic differentiation.
In our in vivo experiments, we confirmed that administering Mg-ZIF could successfully lower ROS levels and mitigate the effects of osteoporosis. On a deeper level, the mechanism behind this involves Mg-ZIF enhancing BMSC differentiation into bone-forming cells by upregulating specific lipid metabolic pathways.
Overall, we believe that Mg-ZIF holds promise as a therapeutic approach for osteoporosis. By addressing the oxidative stress in the bone marrow environment, it opens a new door for potential treatments targeting this common bone disease.
Read More
User Reviews
I ordered this for my husband and now our whole family enjoys it. He had concerns about leg cramps, but after more than a month on the supplement, the cramps have ceased. I also began taking calcium, magnesium, and zinc to prevent osteoporosis. The dosage is appropriate, and the large packaging lasts a long time.
Read More
Effective for osteoporosis
This product helps with my osteoporosis. I take it in courses and trust this company's quality. The form of calcium is easy to digest, and I've noticed less hair loss, stronger nails, and even whiter teeth.
Calcium is fundamental for strong bones and teeth, as well as supporting skeletal muscle health. Magnesium aids calcium transport, while zinc is important for collagen formation in the bones. Adequate calcium intake, alongside physical activity, can lower osteoporosis risk in later life.
Read More
A wonderful combination of three elements for bone health. I bought it for my aunt, as we manage osteoporosis. I appreciate the quality of Solgar products, which have passed quality control. I can affirm that the supplement is effective, as my aunt feels better. The capsules are somewhat large, but she says they are easy to swallow.
Read More
I ordered this because I was concerned about osteoporosis. I’ve noticed that the trembling under my eyes has disappeared, indicating an effect from the supplement.