'
Himalaya Himalaya Organic Ashwagandha
SCIENTIFIC SCORE
Possibly Effective
Based on 32 Researches
7.9
USERS' SCORE
Good
Based on 1 Review
8.5
Supplement Facts
Serving Size: 1 Caplet
Amount Per Serving
%DV
Organic ashwagandha powder (root)(0.2% Withanolides, 0.76 mg)
380 mg
*
Organic ashwagandha extract (root)(0.5% Withanolides, 1.4 mg)
280 mg
*
Organic ashwagandha supercriticalCO2 extract (root) (Withania somnifera) (8% Withanolides, 0.8 mg)
10 mg
*

Top Medical Research Studies

9
DHA affects colorectal cancer pathways
Dietary polyunsaturated fatty acids affect PPARγ promoter methylation status and regulate the PPARγ/COX2 pathway in some colorectal cancer cell lines.
Study focuses on DHA's effects
We set out to explore how docosahexaenoic acid (DHA), a type of omega-3 fatty acid, affects colorectal cancer (CRC) cells. In this study, we treated five different colorectal cancer cell lines with varying concentrations of DHA, along with other fatty acids like eicosapentaenoic acid (EPA) and linoleic acid (LA). This allowed us to see if DHA could impact the methylation patterns of the PPARγ promoter, a key player in cancer regulation, and affect the relationship between PPARγ and COX2, two important molecules involved in cancer growth.

Our findings revealed that DHA significantly altered the methylation status in some cell lines, effectively demethylating specific regions of the PPARγ promoter. We observed that this demethylation was linked to an increase in the expression of PPARγ in cells where it was hemimethylated. Interestingly, DHA not only boosted PPARγ levels but also downregulated COX2 across all CRC cell lines tested. This suggests that DHA might have a role in reducing inflammatory signals linked to cancer progression.

The overall impact seemed to vary depending on the type of cancer cell we were working with, indicating a cell type-dependent effect of DHA. Notably, we found that DHA was more effective than EPA or LA in modulating the PPARγ promoter. This research shows promising potential for DHA in colorectal cancer treatment and highlights its importance in dietary considerations for cancer management.
Read More
9
DHA affects colorectal cancer pathways
Dietary polyunsaturated fatty acids affect PPARγ promoter methylation status and regulate the PPARγ/COX2 pathway in some colorectal cancer cell lines.
Study focuses on DHA's effects
We set out to explore how docosahexaenoic acid (DHA), a type of omega-3 fatty acid, affects colorectal cancer (CRC) cells. In this study, we treated five different colorectal cancer cell lines with varying concentrations of DHA, along with other fatty acids like eicosapentaenoic acid (EPA) and linoleic acid (LA). This allowed us to see if DHA could impact the methylation patterns of the PPARγ promoter, a key player in cancer regulation, and affect the relationship between PPARγ and COX2, two important molecules involved in cancer growth.

Our findings revealed that DHA significantly altered the methylation status in some cell lines, effectively demethylating specific regions of the PPARγ promoter. We observed that this demethylation was linked to an increase in the expression of PPARγ in cells where it was hemimethylated. Interestingly, DHA not only boosted PPARγ levels but also downregulated COX2 across all CRC cell lines tested. This suggests that DHA might have a role in reducing inflammatory signals linked to cancer progression.

The overall impact seemed to vary depending on the type of cancer cell we were working with, indicating a cell type-dependent effect of DHA. Notably, we found that DHA was more effective than EPA or LA in modulating the PPARγ promoter. This research shows promising potential for DHA in colorectal cancer treatment and highlights its importance in dietary considerations for cancer management.
Read More
8
Docosahexaenoic acid and breast cancer
Randomized dose-response trial of n-3 fatty acids in hormone receptor negative breast cancer survivors- impact on breast adipose oxylipin and DNA methylation patterns.
Highly relevant to breast cancer
We conducted an exciting study to understand how docosahexaenoic acid (DHA), a type of n-3 fatty acid, affects women who are survivors of estrogen receptor and progesterone receptor negative (ERPR-) breast cancer. This particular molecular subtype of breast cancer is known for its unique challenges, and dietary fat choices may influence its progression.

Over the course of one year, participants in our clinical trial received different doses of EPA and DHA, ranging from about 1 to 5 grams per day. We gathered blood and breast fat tissue samples at various points during the study to analyze changes in fatty acids, specifically looking at how these doses affected fatty acid levels and related compounds called oxylipins, which are involved in inflammation and cancer processes.

Our findings revealed that the higher doses of EPA and DHA led to increased levels of these fatty acids in breast fat tissue. Moreover, we observed changes in the DNA methylation patterns related to metabolic pathways in breast cancer. This suggests that DHA and EPA may play a role beyond mere nutrition, potentially influencing genetic expression related to cancer risk.

Overall, our research highlights the metabolic and epigenetic effects of n-3 fatty acids in managing ERPR- breast cancer. The study opens up new avenues for exploring how dietary choices may help prevent this aggressive form of breast cancer.
Read More

Most Useful Reviews

8.8
Mood enhancement
I purchased this primarily to support my cancer fight, but it has significantly improved my mood and sleep too. I will certainly continue using it!
Read More

Medical Researches

SCIENTIFIC SCORE
Possibly Effective
Based on 32 Researches
7.9
  • All Researches
9.5
DHA shows promise against neuroblastoma
Ultra-High Dose Oral ω3 Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), or Oxidation-Resistant Deuterated DHA Block Tumorigenesis in a -Driven Neuroblastoma Model.
Strong relevance to DHA's effects
We conducted a study to explore the effects of docosahexaenoic acid (DHA) on tumor formation, particularly in a mouse model of neuroblastoma—a type of aggressive cancer in children. By using a syngeneic model, we gavaged wildtype mice with high doses of omega-3 fatty acids, including DHA, and then injected cancerous cells to monitor tumor development.

In our experiment, we noticed that while 50% of untreated control mice developed tumors, those receiving high doses of DHA or its oxidation-resistant form completely avoided tumor formation. This was quite striking and contrasts with our findings regarding arachidonic acid (ARA), which actually seemed to enhance tumor growth. Notably, when we combined ARA with EPA (another fatty acid), it led to a lower tumor burden, suggesting that DHA acts through a different, non-oxidative mechanism.

These results suggest that high-dose DHA may offer a promising, low-toxicity therapy option for neuroblastoma, paving the way for safer future treatments. It’s exciting to see the potential of omega-3 fatty acids in cancer prevention, especially given their safety and tolerability in humans over extended periods.
Read More
9.5
DHA shows promise against neuroblastoma
Ultra-High Dose Oral ω3 Eicosapentaenoic Acid (EPA), Docosahexaenoic Acid (DHA), or Oxidation-Resistant Deuterated DHA Block Tumorigenesis in a -Driven Neuroblastoma Model.
Strong relevance to DHA's effects
We conducted a study to explore the effects of docosahexaenoic acid (DHA) on tumor formation, particularly in a mouse model of neuroblastoma—a type of aggressive cancer in children. By using a syngeneic model, we gavaged wildtype mice with high doses of omega-3 fatty acids, including DHA, and then injected cancerous cells to monitor tumor development.

In our experiment, we noticed that while 50% of untreated control mice developed tumors, those receiving high doses of DHA or its oxidation-resistant form completely avoided tumor formation. This was quite striking and contrasts with our findings regarding arachidonic acid (ARA), which actually seemed to enhance tumor growth. Notably, when we combined ARA with EPA (another fatty acid), it led to a lower tumor burden, suggesting that DHA acts through a different, non-oxidative mechanism.

These results suggest that high-dose DHA may offer a promising, low-toxicity therapy option for neuroblastoma, paving the way for safer future treatments. It’s exciting to see the potential of omega-3 fatty acids in cancer prevention, especially given their safety and tolerability in humans over extended periods.
Read More
9
DHA affects colorectal cancer pathways
Dietary polyunsaturated fatty acids affect PPARγ promoter methylation status and regulate the PPARγ/COX2 pathway in some colorectal cancer cell lines.
Study focuses on DHA's effects
We set out to explore how docosahexaenoic acid (DHA), a type of omega-3 fatty acid, affects colorectal cancer (CRC) cells. In this study, we treated five different colorectal cancer cell lines with varying concentrations of DHA, along with other fatty acids like eicosapentaenoic acid (EPA) and linoleic acid (LA). This allowed us to see if DHA could impact the methylation patterns of the PPARγ promoter, a key player in cancer regulation, and affect the relationship between PPARγ and COX2, two important molecules involved in cancer growth.

Our findings revealed that DHA significantly altered the methylation status in some cell lines, effectively demethylating specific regions of the PPARγ promoter. We observed that this demethylation was linked to an increase in the expression of PPARγ in cells where it was hemimethylated. Interestingly, DHA not only boosted PPARγ levels but also downregulated COX2 across all CRC cell lines tested. This suggests that DHA might have a role in reducing inflammatory signals linked to cancer progression.

The overall impact seemed to vary depending on the type of cancer cell we were working with, indicating a cell type-dependent effect of DHA. Notably, we found that DHA was more effective than EPA or LA in modulating the PPARγ promoter. This research shows promising potential for DHA in colorectal cancer treatment and highlights its importance in dietary considerations for cancer management.
Read More
9
DHA shows promise in cancer therapy
APT imaging of hepatocellular carcinoma signals an effective therapeutic response in advance of tumor shrinkage.
Nanoparticle delivery context acknowledged
We assessed the effectiveness of docosahexaenoic acid (DHA) in treating cancer, specifically in various rodent models of hepatocellular carcinoma (HCC). The study utilized weighted amide proton transfer (APT) MRI to monitor tumor response in three different HCC models: diethylnitrosamine (DEN) induced HCC, N1S1 syngeneic orthotopic xenograft, and human HepG2 ectopic xenograft.

Our findings revealed that all HCC models exhibited a markedly higher APT signal compared to surrounding normal tissues. This increased signal allowed us to distinguish between malignant HCC lesions and benign nodules specifically in the DEN model.

By administering low-density lipoprotein docosahexaenoic acid (LDL-DHA) nanoparticles directly to N1S1 xenografts, we observed a significant reduction in tumor APT signal within just 72 hours. Similarly, direct injections into HepG2 xenografts demonstrated comparable therapeutic effects. Overall, this study showcases the potential of APT imaging in the diagnostic and therapeutic management of HCC, particularly highlighting DHA's effectiveness delivered via nanoparticles.
Read More
9
Omega-3s may hinder pancreatic cancer
Novel inhibitory effect of Omega-3 fatty acids regulating pancreatic cancer progression.
Study relevance moderately high
In our research, we looked into the potential benefits of docosahexaenoic acid, a type of omega-3 fatty acid, in treating pancreatic cancer. Utilizing a mouse model that closely mirrors the human disease, we examined how a diet rich in omega-3 fatty acids—specifically eicosapentaenoic acid and docosahexaenoic acid—affects tumor growth and metastasis.

We observed that mice on a diet supplemented with cod liver oil, which is high in omega-3s, exhibited a notable decrease in tumor size and lung and liver metastasis compared to control mice. The treatment seemed to enhance survival rates, suggesting that these fatty acids may help combat the growth of cancerous tumors.

Moreover, our findings indicated changes in the tumor's fatty acid profile and the release of eicosanoids, which are important signaling molecules in cancer. The intervention also reduced key histological features of malignancy and promoted apoptosis, or programmed cell death, without impacting the rate of cell proliferation. This indicates that omega-3 fatty acids might act in ways other than just slowing down cell division.

We noted a significant reduction in tumor fibrosis, which is often associated with aggressive cancer forms. This was linked to lower levels of Sonic Hedgehog, a protein playing a central role in tumor development. Overall, our study highlights the promise of docosahexaenoic acid and its fellow omega-3 fatty acids as potential dietary tools in pancreatic cancer treatment, paving the way for incorporating nutritional strategies into cancer care.
Read More

User Reviews

USERS' SCORE
Good
Based on 1 Review
8.5
  • All Reviews
  • Positive Reviews
  • Negative Reviews
8.8
Mood enhancement
I purchased this primarily to support my cancer fight, but it has significantly improved my mood and sleep too. I will certainly continue using it!
image